Some interrelations between Hopf algebras and their duals

Miriam Cohen, Sara Westreich

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


In this paper we study certain interrelations between subsets of Hopf algebras H and their duals which stem from various morphisms T defined on H. We define and study T-cocommutative elements. Cocommutative elements, generators of H as an H*-module and invariants under various actions and coactions are all examples. An important role is played by Nakayama automorphisms. These ideas are applied to (co)quasitriangular Hopf algebras, in particular when they are factorizable. Then the Drinfeld element gives rise to a Nakayama automorphism and to a special element in the dual. Explicit calculations are carried out for the Drinfeld double.

Original languageEnglish
Pages (from-to)42-62
Number of pages21
JournalJournal of Algebra
Issue number1
StatePublished - 1 Jan 2005

Bibliographical note

Funding Information:
* Corresponding author. E-mail addresses: (M. Cohen), (S. Westreich). 1 This research was supported by a grant from the United States–Israel Binational Science Foundation (BSF), Jerusalem, Israel.


Dive into the research topics of 'Some interrelations between Hopf algebras and their duals'. Together they form a unique fingerprint.

Cite this