Abstract
The autoregressive fractionally integrated moving average (ARFIMA) model has become a popular approach for analyzing time series that exhibit long-range dependence. For the Gaussian case, there have been substantial advances in the area of likelihood-based inference, including development of the asymptotic properties of the maximum likelihood estimates and formulation of procedures for their computation. Small-sample inference, however, has not to date been studied. Here we investigate the small-sample behavior of the conventional and Bartlett-corrected likelihood ratio tests (LRT) for the fractional difference parameter. We derive an expression for the Bartlett correction factor. We investigate the asymptotic order of approximation of the Bartlett-corrected test. In addition, we present a small simulation study of the conventional and Bartlett-corrected LRT's. We find that for simple ARFIMA models both tests perform fairly well with a sample size of 40 but the Bartlett-corrected test generally provides an improvement over the conventional test with a sample size of 20.
Original language | English |
---|---|
Pages (from-to) | 231-248 |
Number of pages | 18 |
Journal | Econometric Theory |
Volume | 16 |
Issue number | 2 |
DOIs | |
State | Published - 2000 |
Externally published | Yes |