Single beam Fourier transform digital holographic quantitative phase microscopy

A. Anand, A. Faridian, V. K. Chhaniwal, S. Mahajan, V. Trivedi, S. K. Dubey, G. Pedrini, W. Osten, B. Javidi

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

Original languageEnglish
Article number103705
JournalApplied Physics Letters
Volume104
Issue number10
DOIs
StatePublished - 10 Mar 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'Single beam Fourier transform digital holographic quantitative phase microscopy'. Together they form a unique fingerprint.

Cite this