Sharper and dipper laser beam shaping for super-resolved imaging in silicon

Maor Tiferet, Nadav Shabairou, Zeev Zalevsky, Moshe Sinvani

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

In previous work we demonstrated a new method for shaping of pulsed IR (λ=1.55μm) laser probe beam in silicon. The shaping was done by a second pump pulsed laser beam at 0.532μm and 17ns pulse width which simultaneously and collinearly, illuminates the silicon surface with the IR beam. Following the Plasma Dispersion Effect (PDE), and in proportion to its spatial intensity distribution, the pump laser beam shapes the point spread function (PSF) by controlling the lateral transmission of the IR probe beam. In this paper we report on improvement by factor of 10 in the PSF of the probe beam. We use for the pump beam a pico-second laser at wavelength of 775nm. The use of shorter pulse width for the pump laser allows us to reduce the PSF of the probe beam to diameter of ∼2μm, so far, which is smaller by factor of 10 from what we had before. Also, the penetration depth of the 775 nm pump beam in silicon is ∼10μm compeer to ∼1μm for the 0.532μm laser, which allows probe beam shaping inside the silicon. The use of the shaped probe beam in laser scanning microscopy allows imaging and wide range of contactless electrical measurements in silicon integrated circuits (IC) for failure analysis purposes. We propose this shaping method to overcome the diffraction resolution limit in silicon microscopy on and deep under the silicon surface depending on the wavelength of the pump laser and its temporal pulse width.

Original languageEnglish
Title of host publicationNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVII
EditorsDror Fixler, Ewa M. Goldys, Sebastian Wachsmann-Hogiu
PublisherSPIE
ISBN (Electronic)9781510632714
DOIs
StatePublished - 2020
EventNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVII 2020 - San Francisco, United States
Duration: 2 Feb 20203 Feb 2020

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume11254
ISSN (Print)1605-7422

Conference

ConferenceNanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVII 2020
Country/TerritoryUnited States
CitySan Francisco
Period2/02/203/02/20

Bibliographical note

Publisher Copyright:
© COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.

Keywords

  • Free charge carrier
  • Plasma dispersion
  • Silicon
  • Super resolution

Fingerprint

Dive into the research topics of 'Sharper and dipper laser beam shaping for super-resolved imaging in silicon'. Together they form a unique fingerprint.

Cite this