SemEval 2019 task 10: Math question answering

Mark Hopkins, Ronan Le Bras, Cristian Petrescu-Prahova, Gabriel Stanovsky, Hannaneh Hajishirzi, Rik Koncel-Kedziorski

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

26 Scopus citations

Abstract

We report on the SemEval 2019 task on math question answering. We provided a question set derived from Math SAT practice exams, including 2778 training questions and 1082 test questions. For a significant subset of these questions, we also provided SMT-LIB logical form annotations and an interpreter that could solve these logical forms. Systems were evaluated based on the percentage of correctly answered questions. The top system correctly answered 45% of the test questions, a considerable improvement over the 17% random guessing baseline.

Original languageEnglish
Title of host publicationNAACL HLT 2019 - International Workshop on Semantic Evaluation, SemEval 2019, Proceedings of the 13th Workshop
PublisherAssociation for Computational Linguistics (ACL)
Pages893-899
Number of pages7
ISBN (Electronic)9781950737062
StatePublished - 2019
Externally publishedYes
Event13th International Workshop on Semantic Evaluation, SemEval 2019, co-located with the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2019 - Minneapolis, United States
Duration: 6 Jun 20197 Jun 2019

Publication series

NameNAACL HLT 2019 - International Workshop on Semantic Evaluation, SemEval 2019, Proceedings of the 13th Workshop

Conference

Conference13th International Workshop on Semantic Evaluation, SemEval 2019, co-located with the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2019
Country/TerritoryUnited States
CityMinneapolis
Period6/06/197/06/19

Bibliographical note

Publisher Copyright:
© 2019 Association for Computational Linguistics

Fingerprint

Dive into the research topics of 'SemEval 2019 task 10: Math question answering'. Together they form a unique fingerprint.

Cite this