Selfie5: An Autonomous, Self-Contained Verification Approach for High-Throughput Random Testing of Programmable Processors

Yehuda Kra, Naama Kra, Adam Teman

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Random testing plays a crucial role in processor designs, complementing other verification methodologies. This paper introduces Selfie5, an autonomous, self-contained verification approach that utilizes the device under verification (DUV) itself to generate, execute, and verify random sequences. This approach eliminates the overhead associated with testing environment interfaces, resulting in a substantial increase in throughput, a critical aspect for achieving comprehensive coverage. The utility can be deployed to FPGA prototypes, emulation platforms and fabricated ASICs and run at-speed to execute billions of tested scenarios per hour, while ensuring the reproducibility of captured failures in an observable simulation environment. This paper describes the Selfie5 approach, algorithms and utility, while also providing detailed insights into successful deployment of the utility for a RISC-V implementation. When deployed on a 16 nm test SoC featuring a RISC-V processor, Selfie5 delivered a testing throughput of 13.8 billion tested instructions per hour, which is 69× higher than other published works.

Original languageEnglish
Title of host publication2024 Design, Automation and Test in Europe Conference and Exhibition, DATE 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350348590
StatePublished - 2024
Event2024 Design, Automation and Test in Europe Conference and Exhibition, DATE 2024 - Valencia, Spain
Duration: 25 Mar 202427 Mar 2024

Publication series

NameProceedings -Design, Automation and Test in Europe, DATE
ISSN (Print)1530-1591

Conference

Conference2024 Design, Automation and Test in Europe Conference and Exhibition, DATE 2024
Country/TerritorySpain
CityValencia
Period25/03/2427/03/24

Bibliographical note

Publisher Copyright:
© 2024 EDAA.

Keywords

  • high-throughput testing
  • open source utility
  • post-silicon validation
  • Random verification
  • RISC-V
  • self-contained

Fingerprint

Dive into the research topics of 'Selfie5: An Autonomous, Self-Contained Verification Approach for High-Throughput Random Testing of Programmable Processors'. Together they form a unique fingerprint.

Cite this