Abstract
During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100 M, with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93 Gpc-3 yr-1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.
Original language | English |
---|---|
Article number | 022001 |
Journal | Physical Review D |
Volume | 96 |
Issue number | 2 |
DOIs | |
State | Published - 15 Jul 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 American Physical Society.
Funding
The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economa y Competitividad, the Vicepresidncia i Conselleria dInnovaci, Recerca i Turisme and the Conselleria dEducaci i Universitat del Govern de les Illes Balears, the National Science Centre of Poland, the European Commission, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, and Innovation, International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), Russian Foundation for Basic Research, the Leverhulme Trust, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources.
Funders | Funder number |
---|---|
Brazilian Ministry of Science, Technology, and Innovation | |
Department of Science and Technology, India, Science & Engineering Research Board | |
Spanish Ministerio de Economa y Competitividad | |
National Science Foundation | 1708081, 1104371, 1458952, 1607585, 1308527, 1404139, 1505629, 1506360, 1608423 |
Directorate for Mathematical and Physical Sciences | |
Kavli Foundation | |
Canadian Institute for Advanced Research | |
Natural Sciences and Engineering Research Council of Canada | |
Ontario Ministry of Economic Development and Innovation | |
Science and Technology Facilities Council | ST/N000064/1, ST/N00003X/1, ST/J000019/1, ST/P000258/1, ST/H002006/1, ST/L000954/1, ST/M005844/1, PP/F001118/1, ST/H008438/1, ST/J000345/1, PP/F00110X/1, ST/I000887/1, ST/J000302/1, 1653071, ST/N000072/1, ST/N005481/1, ST/I006277/1, ST/L000911/1, ST/N005422/1, ST/N005716/1, PPA/G/S/2002/00652, ST/J000361/1, ST/N005406/1, Gravitational Waves, ST/G504284/1, ST/K000845/1, ST/I006285/1, ST/L003465/1, ST/I006242/1, 1654298, PP/F001096/1, ST/M006735/1, ST/I006269/1, ST/N000080/1, ST/I001085/1, ST/L000946/1, ST/F500972/1, ST/L000962/1, ST/N000633/1, ST/I001026/1, ST/J00166X/1, ST/N005430/1 |
Leverhulme Trust | |
Royal Society | |
Scottish Funding Council | |
Scottish Universities Physics Alliance | |
European Commission | |
Australian Research Council | |
Council of Scientific and Industrial Research, India | |
Science and Engineering Research Board | |
Russian Foundation for Basic Research | |
Nederlandse Organisatie voor Wetenschappelijk Onderzoek | |
Hungarian Scientific Research Fund | |
National Research Foundation of Korea | |
Instituto Nazionale di Fisica Nucleare | |
Narodowe Centrum Nauki | |
Ministry of Human Resource Development | |
Ministry of Science and Technology, Taiwan | |
Centre National de la Recherche Scientifique | |
Universitat de les Illes Balears | |
Istituto Nazionale di Fisica Nucleare | |
ICTP South American Institute for Fundamental Research |