Abstract
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering.
Original language | English |
---|---|
Article number | 122002 |
Journal | Physical Review D |
Volume | 100 |
Issue number | 12 |
DOIs | |
State | Published - 4 Dec 2019 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2019 American Physical Society.
Funding
The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board, India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National Science Foundation, the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund, the Lyon Institute of Origins, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary, the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research, the Research Grants Council of Hong Kong, the National Natural Science Foundation of China, the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology, Taiwan, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, CNRS, Swinburne University of Technology, the National Collaborative Research Infrastructure Strategy of Australia, and the State of Niedersachsen/Germany for provision of computational resources. This work has been assigned LIGO Document No. LIGO-P1800208.
Funders | Funder number |
---|---|
Not added | ST/I006269/1, ST/K000845/1, ST/N000633/1, ST/N000072/1, ST/H002006/1 |
Netherlands Organisation for Scientific Research for the construction and operation of the Virgo detector | |
National Science Foundation | 1707965, 1708081, 1921006, 1806824, 1912632, 1707835, 1726215, 1806990, 1912648 |
Kavli Foundation | |
Canadian Institute for Advanced Research | |
Institut des Origines de Lyon | |
Natural Sciences and Engineering Research Council of Canada | |
Ontario Ministry of Economic Development and Innovation | |
Science and Technology Facilities Council | ST/J00166X/1 |
Leverhulme Trust | |
Royal Society | |
Scottish Funding Council | |
Scottish Universities Physics Alliance | |
European Commission | |
Australian Research Council | |
Department of Science and Technology, Ministry of Science and Technology, India | |
Council of Scientific and Industrial Research, India | |
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung | |
Swinburne University of Technology | |
National Natural Science Foundation of China | |
Science and Engineering Research Board | |
Russian Foundation for Basic Research | |
Research Grants Council, University Grants Committee | |
Generalitat Valenciana | |
Hungarian Scientific Research Fund | |
National Research Foundation of Korea | |
Instituto Nazionale di Fisica Nucleare | |
Narodowe Centrum Nauki | |
Ministry of Human Resource Development | |
Ministry of Science and Technology, Taiwan | |
Centre National de la Recherche Scientifique | |
Russian Science Foundation | |
European Regional Development Fund | |
Universitat de les Illes Balears | |
Agencia Estatal de Investigación | |
Ministério da Ciência, Tecnologia, Inovações e Comunicações | |
Istituto Nazionale di Fisica Nucleare | |
ICTP South American Institute for Fundamental Research | |
National Research, Development and Innovation Office |