Abstract
Cataract, the leading cause of vision impairment worldwide, arises from abnormal aggregation of crystallin lens proteins. Presently, surgical removal is the only therapeutic approach. Recent findings have triggered renewed interest in development of non-surgical treatment alternatives. However, emerging treatments are yet to achieve full and consistent lens clearance. Here, the first ex vivo assay to screen for drug candidates that reduce human lenticular protein aggregation was developed. This assay allowed the identification of two leading compounds as facilitating the restoration of nearly-complete transparency of phacoemulsified cataractous preparation ex vivo. Mechanistic studies demonstrated that both compounds reduce cataract microparticle size and modify their amyloid-like features. In vivo studies confirmed that the lead compound, rosmarinic acid, delays cataract formation and reduces the severity of lens opacification in model rats. Thus, the ex vivo assay may provide an initial platform for broad screening of potential novel therapeutic agents towards pharmacological treatment of cataract.
Original language | English |
---|---|
Article number | 9341 |
Journal | Scientific Reports |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - 19 Jun 2018 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2018 The Author(s).
Funding
We would like to thank Prof. Maya Schuldiner for the discussion of the activity of 25-hydroxycholesterol and for providing us with the compound. We are also thankful to the Gazit and Segal lab-teams for the comprehensive and fruitful discussions. This research work is supported by the Rambam-Atidim Academic Excellence Program and generously supported by a grant from The Edna & Jonathan Sohnis Clinical Scientific Research Fund.
Funders | Funder number |
---|---|
Edna & Jonathan Sohnis Clinical Scientific Research Fund |