Robotic fluidic coupling and interrogation of multiple vascularized organ chips

Richard Novak, Miles Ingram, Susan Marquez, Debarun Das, Aaron Delahanty, Anna Herland, Ben M. Maoz, Sauveur S.F. Jeanty, Mahadevabharath R. Somayaji, Morgan Burt, Elizabeth Calamari, Angeliki Chalkiadaki, Alexander Cho, Youngjae Choe, David Benson Chou, Michael Cronce, Stephanie Dauth, Toni Divic, Jose Fernandez-Alcon, Thomas FerranteJohn Ferrier, Edward A. FitzGerald, Rachel Fleming, Sasan Jalili-Firoozinezhad, Thomas Grevesse, Josue A. Goss, Tiama Hamkins-Indik, Olivier Henry, Chris Hinojosa, Tessa Huffstater, Kyung Jin Jang, Ville Kujala, Lian Leng, Robert Mannix, Yuka Milton, Janna Nawroth, Bret A. Nestor, Carlos F. Ng, Blakely O’Connor, Tae Eun Park, Henry Sanchez, Josiah Sliz, Alexandra Sontheimer-Phelps, Ben Swenor, Guy Thompson, George J. Touloumes, Zachary Tranchemontagne, Norman Wen, Moran Yadid, Anthony Bahinski, Geraldine A. Hamilton, Daniel Levner, Oren Levy, Andrzej Przekwas, Rachelle Prantil-Baun, Kevin K. Parker, Donald E. Ingber

Research output: Contribution to journalArticlepeer-review

276 Scopus citations

Abstract

Organ chips can recapitulate organ-level (patho)physiology, yet pharmacokinetic and pharmacodynamic analyses require multi-organ systems linked by vascular perfusion. Here, we describe an ‘interrogator’ that employs liquid-handling robotics, custom software and an integrated mobile microscope for the automated culture, perfusion, medium addition, fluidic linking, sample collection and in situ microscopy imaging of up to ten organ chips inside a standard tissue-culture incubator. The robotic interrogator maintained the viability and organ-specific functions of eight vascularized, two-channel organ chips (intestine, liver, kidney, heart, lung, skin, blood–brain barrier and brain) for 3 weeks in culture when intermittently fluidically coupled via a common blood substitute through their reservoirs of medium and endothelium-lined vascular channels. We used the robotic interrogator and a physiological multicompartmental reduced-order model of the experimental system to quantitatively predict the distribution of an inulin tracer perfused through the multi-organ human-body-on-chips. The automated culture system enables the imaging of cells in the organ chips and the repeated sampling of both the vascular and interstitial compartments without compromising fluidic coupling.

Original languageEnglish
Pages (from-to)407-420
Number of pages14
JournalNature Biomedical Engineering
Volume4
Issue number4
DOIs
StatePublished - 1 Apr 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature Limited.

Funding

This research was sponsored by the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Defense Advanced Research Projects Agency under Cooperative Agreement number W911NF-12-2-0036. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the US government. This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF award number 1541959. The CNS is part of Harvard University, the Harvard Materials Research Science and Engineering Center (DMR-1420570). The authors thank J. Caramanica and P. Machado for their machining expertise, M. Rosnach for his artwork, B. Fountaine and S. Kroll for their help with photography, M. Rousseau for help with videography, C. Vidoudez for mass spectrometry analysis, and J. Wikswo for helpful input at the start of this project.

FundersFunder number
National Science Foundation1541959
National Cancer InstituteT32CA009216
Defense Advanced Research Projects AgencyW911NF-12-2-0036
Hansjörg Wyss Institute for Biologically Inspired Engineering, Harvard University

    Fingerprint

    Dive into the research topics of 'Robotic fluidic coupling and interrogation of multiple vascularized organ chips'. Together they form a unique fingerprint.

    Cite this