Robotic adversarial coverage: Introduction and preliminary results

Roi Yehoshua, Noa Agmon, Gal A. Kaminka

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Scopus citations

Abstract

This paper discusses the problem of generating efficient coverage paths for a mobile robot in an adversarial environment, where threats exist that might stop the robot. First, we formally define the problem of adversarial coverage, and present optimization criteria used for evaluation of coverage algorithms in adversarial environments. We then present a coverage area planning algorithm based on a map of the probable threats. The algorithm tries to minimize the total risk involved in covering the target area while taking into account coverage time constrains. The algorithm is based on incrementally extending the coverage path to the nearest safe cells while allowing the robot to repeat its steps. By allowing the robot to visit each cell in the target area more than once, the accumulated risk can be reduced at the expense of extending the coverage time. We show the effectiveness of this algorithm in extensive experiments.

Original languageEnglish
Title of host publicationIROS 2013
Subtitle of host publicationNew Horizon, Conference Digest - 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
Pages6000-6005
Number of pages6
DOIs
StatePublished - 2013
Event2013 26th IEEE/RSJ International Conference on Intelligent Robots and Systems: New Horizon, IROS 2013 - Tokyo, Japan
Duration: 3 Nov 20138 Nov 2013

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2013 26th IEEE/RSJ International Conference on Intelligent Robots and Systems: New Horizon, IROS 2013
Country/TerritoryJapan
CityTokyo
Period3/11/138/11/13

Bibliographical note

Place of conference:Tokyo

Fingerprint

Dive into the research topics of 'Robotic adversarial coverage: Introduction and preliminary results'. Together they form a unique fingerprint.

Cite this