Road scene understanding by occupancy grid learning from sparse radar clusters using semantic segmentation

Liat Sless, Bat El Shlomo, Gilad Cohen, Shaul Oron

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

46 Scopus citations

Abstract

Occupancy grid mapping is an important component in road scene understanding for autonomous driving. It encapsulates information of the drivable area, road obstacles and enables safe autonomous driving. Radars are an emerging sensor in autonomous vehicle vision, becoming more widely used due to their long range sensing, low cost, and robustness to severe weather conditions. Despite recent advances in deep learning technology, occupancy grid mapping from radar data is still mostly done using classical filtering approaches. In this work, we propose learning the inverse sensor model used for occupancy grid mapping from clustered radar data. This is done in a data driven approach that leverages computer vision techniques. This task is very challenging due to data sparsity and noise characteristics of the radar sensor. The problem is formulated as a semantic segmentation task and we show how it can be learned using lidar data for generating ground truth. We show both qualitatively and quantitatively that our learned occupancy net outperforms classic methods by a large margin using the recently released NuScenes real-world driving data.

Original languageEnglish
Title of host publicationProceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages867-875
Number of pages9
ISBN (Electronic)9781728150239
DOIs
StatePublished - Oct 2019
Externally publishedYes
Event17th IEEE/CVF International Conference on Computer Vision Workshop, ICCVW 2019 - Seoul, Korea, Republic of
Duration: 27 Oct 201928 Oct 2019

Publication series

NameProceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019

Conference

Conference17th IEEE/CVF International Conference on Computer Vision Workshop, ICCVW 2019
Country/TerritoryKorea, Republic of
CitySeoul
Period27/10/1928/10/19

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

Keywords

  • Occupancy grid
  • Radar free space
  • Radar learning
  • Road scene understanding

Fingerprint

Dive into the research topics of 'Road scene understanding by occupancy grid learning from sparse radar clusters using semantic segmentation'. Together they form a unique fingerprint.

Cite this