Abstract
Tasks involving text generation based on multiple input texts, such as multi-document summarization, long-form question answering and contemporary dialogue applications, challenge models for their ability to properly consolidate partly-overlapping multi-text information. However, these tasks entangle the consolidation phase with the often subjective and ill-defined content selection requirement, impeding proper assessment of models' consolidation capabilities. In this paper, we suggest revisiting the sentence union generation task as an effective well-defined testbed for assessing text consolidation capabilities, decoupling the consolidation challenge from subjective content selection. To support research on this task, we present refined annotation methodology and tools for crowdsourcing sentence union, create the largest union dataset to date and provide an analysis of its rich coverage of various consolidation aspects. We then propose a comprehensive evaluation protocol for union generation, including both human and automatic evaluation. Finally, as baselines, we evaluate state-of-the-art language models on the task, along with a detailed analysis of their capacity to address multi-text consolidation challenges and their limitations.
Original language | English |
---|---|
Title of host publication | Findings of the Association for Computational Linguistics, ACL 2023 |
Publisher | Association for Computational Linguistics (ACL) |
Pages | 7038-7058 |
Number of pages | 21 |
ISBN (Electronic) | 9781959429623 |
DOIs | |
State | Published - 2023 |
Event | Findings of the Association for Computational Linguistics, ACL 2023 - Toronto, Canada Duration: 9 Jul 2023 → 14 Jul 2023 |
Publication series
Name | Proceedings of the Annual Meeting of the Association for Computational Linguistics |
---|---|
ISSN (Print) | 0736-587X |
Conference
Conference | Findings of the Association for Computational Linguistics, ACL 2023 |
---|---|
Country/Territory | Canada |
City | Toronto |
Period | 9/07/23 → 14/07/23 |
Bibliographical note
Publisher Copyright:© 2023 Association for Computational Linguistics.
Funding
The work described herein was supported in part by grants from One AI, the Israel Science Foundation 2827/21 and the Israel Ministry of Science and Technology. We would like to thank the workers who have annotated this dataset and we appreciate their dedication in ensuring a high level of quality. We express our gratitude to Dr. Kapil Thadani for assisting us in retrieving his data from an earlier research endeavor.
Funders | Funder number |
---|---|
Israel Science Foundation | 2827/21 |
Ministry of science and technology, Israel |