Abstract
We introduce a response theory for open quantum systems within nonequilibrium steady states subject to a Hamiltonian perturbation. Working in the weak system-bath coupling regime, our results are derived within the Lindblad-Gorini-Kossakowski-Sudarshan formalism. We find that the response of the system to a small perturbation is not simply related to a correlation function within the system, unlike traditional linear response theory in closed systems or expectations from the fluctuation-dissipation theorem. In limiting cases, when the perturbation is small relative to the coupling to the surroundings or when it does not lead to a change of the eigenstructure of the system, a perturbative expansion exists where the response function is related to a sum of a system correlation functions and additional forces induced by the surroundings. Away from these limiting regimes, however, the secular approximation results in a singular response that cannot be captured within the traditional approach but can be described by reverting to a microscopic Hamiltonian description. These findings are illustrated by explicit calculations in coupled qubits and anharmonic oscillators in contact with bosonic baths at different temperatures.
Original language | English |
---|---|
Article number | 023252 |
Journal | Physical Review Research |
Volume | 3 |
Issue number | 2 |
DOIs | |
State | Published - Jun 2021 |
Bibliographical note
Publisher Copyright:© 2021 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.