Reservoir computing on epidemic spreading: A case study on COVID-19 cases

Subrata Ghosh, Abhishek Senapati, Arindam Mishra, Joydev Chattopadhyay, Syamal K. Dana, Chittaranjan Hens, Dibakar Ghosh

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


A reservoir computing based echo state network (ESN) is used here for the purpose of predicting the spread of a disease. The current infection trends of a disease in some targeted locations are efficiently captured by the ESN when it is fed with the infection data for other locations. The performance of the ESN is first tested with synthetic data generated by numerical simulations of independent uncoupled patches, each governed by the classical susceptible-infected-recovery model for a choice of distributed infection parameters. From a large pool of synthetic data, the ESN predicts the current trend of infection in patches by exploiting the uncorrelated infection trend of patches. The prediction remains consistent for most of the patches for approximately 4 to 5 weeks. The machine's performance is further tested with real data on the current COVID-19 pandemic collected for different countries. We show that our proposed scheme is able to predict the trend of the disease for up to 3 weeks for some targeted locations. An important point is that no detailed information on the epidemiological rate parameters is needed; the success of the machine rather depends on the history of the disease progress represented by the time-evolving data sets of a large number of locations. Finally, we apply a modified version of our proposed scheme for the purpose of future forecasting.

Original languageEnglish
Article number014308
JournalPhysical Review E
Issue number1
StatePublished - Jul 2021
Externally publishedYes

Bibliographical note

Publisher Copyright:
©2021 American Physical Society


Dive into the research topics of 'Reservoir computing on epidemic spreading: A case study on COVID-19 cases'. Together they form a unique fingerprint.

Cite this