Abstract
We revisit the problem of multiplying two square matrices over the (min, +) semi-ring, where all entries are integers from a bounded range [−M: M] ∪ {∞}. The current state of the art for this problem is a simple O(Mnω log M) time algorithm by Alon, Galil and Margalit [JCSS'97], where ω is the exponent in the runtime of the fastest matrix multiplication (FMM) algorithm. We design a new simple algorithm whose runtime is O(Mnω + Mn2 log M), thereby removing the log M factor in the runtime if ω > 2 or if nω = Ω(n2 log n).
Original language | English |
---|---|
Title of host publication | 32nd Annual European Symposium on Algorithms, ESA 2024 |
Editors | Timothy Chan, Johannes Fischer, John Iacono, Grzegorz Herman |
Publisher | Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing |
ISBN (Electronic) | 9783959773386 |
DOIs | |
State | Published - Sep 2024 |
Event | 32nd Annual European Symposium on Algorithms, ESA 2024 - London, United Kingdom Duration: 2 Sep 2024 → 4 Sep 2024 |
Publication series
Name | Leibniz International Proceedings in Informatics, LIPIcs |
---|---|
Volume | 308 |
ISSN (Print) | 1868-8969 |
Conference
Conference | 32nd Annual European Symposium on Algorithms, ESA 2024 |
---|---|
Country/Territory | United Kingdom |
City | London |
Period | 2/09/24 → 4/09/24 |
Bibliographical note
Publisher Copyright:© Dvir Fried, Tsvi Kopelowitz, and Ely Porat; licensed under Creative Commons License CC-BY 4.0.
Keywords
- (min, +)-product
- FFT
- FMM