Relativistic Jets from black hole accretion disc

Indranil Chattopadhyay, Mukesh K. Vyas, Kuldeep Singh

Research output: Contribution to journalConference articlepeer-review

Abstract

Astrophysical jets from AGNs and microquasars are often relativistic and collimated. We study magnetic and radiative driving of jets to address these issues. The plasma is described by a relativistic equation of state which depends on the composition. We show that the matter content may not affect the streamline of magnetically driven jets, but the poloidal velocity and temperature distribution strongly depend on the composition of the jet. We also discuss the salient features of radiatively driven jets. Although consensus in the community precludes radiation driving to be an effective acceleration mechanism, we show that it is certainly not the case. For black holes surrounded by luminous discs, jets may be accelerated up to Lorentz factors of ∼ a few for baryon dominated jets. Interestingly, the terminal Lorentz factor may reach to a value of a few tens for lepton dominated jets. We also show that internal shocks driven by radiation are also possible in jets. Moreover, a temperature dependent scattering cross-section can produce relativistic jets that are launched with very low speeds and quite moderate temperatures, conditions which are expected in the inner region of the accretion discs. Although we have studied magnetic driving and radiative driving separately, it is apparent that both processes should be incorporated in order to solve the collimation and acceleration enigma of astrophysical jets.

Original languageEnglish
Article number007
JournalProceedings of Science
Volume354
StatePublished - 2019
Externally publishedYes
Event7th High Energy Phenomena in Relativistic Outflows, HEPRO 2019 - Barcelona, Spain
Duration: 9 Jul 201912 Jul 2019

Bibliographical note

Publisher Copyright:
© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

Funding

IC acknowledges ARIES and CSIR to provide the travel fund to attend the conference. IC also acknowledges the LOC of HEPROVII for local hospitality.

FundersFunder number
Council of Scientific and Industrial Research, India

    Fingerprint

    Dive into the research topics of 'Relativistic Jets from black hole accretion disc'. Together they form a unique fingerprint.

    Cite this