TY - JOUR
T1 - Regularity of the inversion problem for the Sturm-Liouville difference equation IV. Stability conditions for a three-point difference scheme with non-negative coefficients
AU - Chernyavskaya, N. A.
AU - Schiff, J.
AU - Shuster, L. A.
PY - 2005/5
Y1 - 2005/5
N2 - Consider a three-point difference scheme -h-2Δ (2)yn + qn(h)yn = fn(h), n ∈ Z = {0, ± 1, ± 2,...} (1) where h ∈ (0, h 0], h0 is a given positive number, Δ (2)yn = yn+1 - 2yn + y n-1, f(h) =def {fn(h)}n∈Z ∈ L p(h),p ∈ [1, ∞), Lp(h) = { f(h): ∥ f (h) ∥ Lp(h) < ∞}, ∥f(h)∥|pL p(h) =∑n∈|f n(h)|p h. Assume that the sequence q(h) =def {qn(h)}n∈Z satisfies the a priori condition 0 ≤ qn(h) < ∞ ∀n ∈ Z, ∀h ∈ (0, h0]. We obtain criteria for the stability of scheme (1) in Lp(h), p ∈ [1, ∞).
AB - Consider a three-point difference scheme -h-2Δ (2)yn + qn(h)yn = fn(h), n ∈ Z = {0, ± 1, ± 2,...} (1) where h ∈ (0, h 0], h0 is a given positive number, Δ (2)yn = yn+1 - 2yn + y n-1, f(h) =def {fn(h)}n∈Z ∈ L p(h),p ∈ [1, ∞), Lp(h) = { f(h): ∥ f (h) ∥ Lp(h) < ∞}, ∥f(h)∥|pL p(h) =∑n∈|f n(h)|p h. Assume that the sequence q(h) =def {qn(h)}n∈Z satisfies the a priori condition 0 ≤ qn(h) < ∞ ∀n ∈ Z, ∀h ∈ (0, h0]. We obtain criteria for the stability of scheme (1) in Lp(h), p ∈ [1, ∞).
KW - Difference scheme
KW - Inversion problem
KW - Non-negative coefficients
KW - Sturm-Liouville equation
UR - http://www.scopus.com/inward/record.url?scp=22944434900&partnerID=8YFLogxK
U2 - 10.1080/10236190500044221
DO - 10.1080/10236190500044221
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:22944434900
SN - 1023-6198
VL - 11
SP - 487
EP - 501
JO - Journal of Difference Equations and Applications
JF - Journal of Difference Equations and Applications
IS - 6
ER -