Regression calibration with more surrogates than mismeasured variables

Victor Kipnis, Douglas Midthune, Laurence S. Freedman, Raymond J. Carroll

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

In a recent paper (Weller EA, Milton DK, Eisen EA, Spiegelman D. Regression calibration for logistic regression with multiple surrogates for one exposure. Journal of Statistical Planning and Inference 2007; 137: 449-461), the authors discussed fitting logistic regression models when a scalar main explanatory variable is measured with error by several surrogates, that is, a situation with more surrogates than variables measured with error. They compared two methods of adjusting for measurement error using a regression calibration approximate model as if it were exact. One is the standard regression calibration approach consisting of substituting an estimated conditional expectation of the true covariate given observed data in the logistic regression. The other is a novel two-stage approach when the logistic regression is fitted to multiple surrogates, and then a linear combination of estimated slopes is formed as the estimate of interest. Applying estimated asymptotic variances for both methods in a single data set with some sensitivity analysis, the authors asserted superiority of their two-stage approach. We investigate this claim in some detail. A troubling aspect of the proposed two-stage method is that, unlike standard regression calibration and a natural form of maximum likelihood, the resulting estimates are not invariant to reparameterization of nuisance parameters in the model. We show, however, that, under the regression calibration approximation, the two-stage method is asymptotically equivalent to a maximum likelihood formulation, and is therefore in theory superior to standard regression calibration. However, our extensive finite-sample simulations in the practically important parameter space where the regression calibration model provides a good approximation failed to uncover such superiority of the two-stage method. We also discuss extensions to different data structures.

Original languageEnglish
Pages (from-to)2713-2732
Number of pages20
JournalStatistics in Medicine
Volume31
Issue number23
DOIs
StatePublished - 15 Oct 2012
Externally publishedYes

Funding

FundersFunder number
National Cancer InstituteR01CA057030

    Keywords

    • Attenuation
    • Logistic regression
    • Measurement error
    • Reparameterization

    Fingerprint

    Dive into the research topics of 'Regression calibration with more surrogates than mismeasured variables'. Together they form a unique fingerprint.

    Cite this