Recomposing the Reinforcement Learning Building Blocks with Hypernetworks

Elad Sarafian, Shai Keynan, Sarit Kraus

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

22 Scopus citations

Abstract

The Reinforcement Learning (RL) building blocks, i.e. Q-functions and policy networks, usually take elements from the cartesian product of two domains as input. In particular, the input of the Q-function is both the state and the action, and in multi-task problems (Meta-RL) the policy can take a state and a context. Standard architectures tend to ignore these variables' underlying interpretations and simply concatenate their features into a single vector. In this work, we argue that this choice may lead to poor gradient estimation in actor-critic algorithms and high variance learning steps in Meta-RL algorithms. To consider the interaction between the input variables, we suggest using a Hypernetwork architecture where a primary network determines the weights of a conditional dynamic network. We show that this approach improves the gradient approximation and reduces the learning step variance, which both accelerates learning and improves the final performance. We demonstrate a consistent improvement across different locomotion tasks and different algorithms both in RL (TD3 and SAC) and in Meta-RL (MAML and PEARL).

Original languageEnglish
Title of host publicationProceedings of the 38th International Conference on Machine Learning, ICML 2021
PublisherML Research Press
Pages9301-9312
Number of pages12
ISBN (Electronic)9781713845065
StatePublished - 2021
Event38th International Conference on Machine Learning, ICML 2021 - Virtual, Online
Duration: 18 Jul 202124 Jul 2021

Publication series

NameProceedings of Machine Learning Research
Volume139
ISSN (Electronic)2640-3498

Conference

Conference38th International Conference on Machine Learning, ICML 2021
CityVirtual, Online
Period18/07/2124/07/21

Bibliographical note

Publisher Copyright:
Copyright © 2021 by the author(s)

Fingerprint

Dive into the research topics of 'Recomposing the Reinforcement Learning Building Blocks with Hypernetworks'. Together they form a unique fingerprint.

Cite this