Quantum limit for information transmission

Marcelo Schiffer

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

In this paper, we give two independent and rigorous derivations for the quantum bound on the information transmission rate proposed independently by Bekenstein [Phys. Rev. Lett. 46, 623 (1981)] and Bremermann. ul2 [Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, edited by L. M. LeCam and J. Neyman (University of California Press, Berkeley, 1967], preceded by a heuristic argument showing why such a bound must hold. In both approaches, information carriers are quanta for some field. The first method resembles the microcanonical approach to statistical mechanics, where the strategy of overestimating the real number of states by relaxing the indistinguishability of quanta was adopted. The second is based entirely upon maximum-entropy methods. Amazingly enough, the results obtained by these physically unrelated premises turn out to be identical, namely, that the single (noiseless) channel capacity is Imax=E/2Latin small letter h with stroke bits s-1. It is further shown that, in a finite time , no information can ever be conveyed unless the energy threshold 2Latin small letter h with stroke/ is reached, allowing the reinterpretation of the time-energy uncertainty in informational-theoretic language.

Original languageEnglish
Pages (from-to)5337-5343
Number of pages7
JournalPhysical Review A
Volume43
Issue number10
DOIs
StatePublished - 1991
Externally publishedYes

Fingerprint

Dive into the research topics of 'Quantum limit for information transmission'. Together they form a unique fingerprint.

Cite this