Abstract
High-throughput immunoglobulin sequencing promises new insights into the somatic hypermutation and antigen-driven selection processes that underlie B-cell affinity maturation and adaptive immunity. The ability to estimate positive and negative selection from these sequence data has broad applications not only for understanding the immune response to pathogens, but is also critical to determining the role of somatic hypermutation in autoimmunity and B-cell cancers. Here, we develop a statistical framework for Bayesian estimation of Antigen-driven SELectIoN (BASELINe) based on the analysis of somatic mutation patterns. Our approach represents a fundamental advance over previous methods by shifting the problem from one of simply detecting selection to one of quantifying selection. Along with providing a more intuitive means to assess and visualize selection, our approach allows, for the first time, comparative analysis between groups of sequences derived from different germline V(D)J segments. Application of this approach to next-generation sequencing data demonstrates different selection pressures for memory cells of different isotypes. This framework can easily be adapted to analyze other types of DNA mutation patterns resulting from a mutator that displays hotcold-spots, substitution preference or other intrinsic biases.
Original language | English |
---|---|
Pages (from-to) | e134 |
Journal | Nucleic Acids Research |
Volume | 40 |
Issue number | 17 |
DOIs | |
State | Published - 1 Sep 2012 |
Externally published | Yes |
Bibliographical note
Funding Information:National Institutes of Health (NIH) [R03AI092379-01 to S.H.K.]; Yale University Biomedical High Performance Computing Center (NIH) [RR19895]. Funding for open access charge: NIH [R03AI092379-01].
Funding
National Institutes of Health (NIH) [R03AI092379-01 to S.H.K.]; Yale University Biomedical High Performance Computing Center (NIH) [RR19895]. Funding for open access charge: NIH [R03AI092379-01].
Funders | Funder number |
---|---|
National Institutes of Health | R03AI092379-01 |
National Center for Research Resources | S10RR019895 |