TY - JOUR
T1 - Proteins as electronic materials
T2 - Electron transport through solid-state protein monolayer junctions
AU - Ron, Izhar
AU - Sepunaru, Lior
AU - Ltzhakov, Stella
AU - Belenkova, Tatyana
AU - Friedman, Noga
AU - Pecht, Israel
AU - Sheves, Mordechal
AU - Cahen, David
PY - 2010/3/31
Y1 - 2010/3/31
N2 - Electron transfer (ET) through proteins, a fundamental element of many biochemical reactions, is studied Intensively in aqueous solutions. Over the past decade, attempts were made to Integrate proteins into solid-state Junctions in order to study their electronic conductance properties. Most such studies to date were conducted with one or very few molecules In the Junction, using scanning probe techniques. Here we present the high-yield, reproducible preparation of large-area monolayer Junctions, assembled on a Si platform, of proteins of three different families: azurln (Az), a blue-copper ET protein, bacterlorhodopsln (bR), a membrane proteln-chromophore complex with a proton pumping function, and bovine serum albumin (BSA). We achieve highly reproducible electrical current measurements with these three types of monolayers using appropriate top electrodes. Notably, the current-voltage (i-V) measurements on such Junctions show relatively minor differences between Az and bR, even though the latter lacks any known ET function. Electron Transport (ETp) across both Az and bR is much more efficient than across BSA, but even for the latter the measured currents are higher than those through a monolayer of organic, C18 alkyl chains that is about half as wide, therefore suggesting transport mechanlsm(s) different from the often considered coherent mechanism. Our results show that the employed proteins maintain their conformation under these conditions. The relatively efficient ETp through these proteins opens up possibilities for using such blomolecules as current-carrying elements in solid-state electronic devices.
AB - Electron transfer (ET) through proteins, a fundamental element of many biochemical reactions, is studied Intensively in aqueous solutions. Over the past decade, attempts were made to Integrate proteins into solid-state Junctions in order to study their electronic conductance properties. Most such studies to date were conducted with one or very few molecules In the Junction, using scanning probe techniques. Here we present the high-yield, reproducible preparation of large-area monolayer Junctions, assembled on a Si platform, of proteins of three different families: azurln (Az), a blue-copper ET protein, bacterlorhodopsln (bR), a membrane proteln-chromophore complex with a proton pumping function, and bovine serum albumin (BSA). We achieve highly reproducible electrical current measurements with these three types of monolayers using appropriate top electrodes. Notably, the current-voltage (i-V) measurements on such Junctions show relatively minor differences between Az and bR, even though the latter lacks any known ET function. Electron Transport (ETp) across both Az and bR is much more efficient than across BSA, but even for the latter the measured currents are higher than those through a monolayer of organic, C18 alkyl chains that is about half as wide, therefore suggesting transport mechanlsm(s) different from the often considered coherent mechanism. Our results show that the employed proteins maintain their conformation under these conditions. The relatively efficient ETp through these proteins opens up possibilities for using such blomolecules as current-carrying elements in solid-state electronic devices.
UR - http://www.scopus.com/inward/record.url?scp=77950204624&partnerID=8YFLogxK
U2 - 10.1021/ja907328r
DO - 10.1021/ja907328r
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 20210314
AN - SCOPUS:77950204624
SN - 0002-7863
VL - 132
SP - 4131
EP - 4140
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 12
ER -