TY - JOUR
T1 - Protein Electronics
T2 - Chemical Modulation of Contacts Control Energy Level Alignment in Gold-Azurin-Gold Junctions
AU - Fereiro, Jerry A.
AU - Porat, Gilad
AU - Bendikov, Tatyana
AU - Pecht, Israel
AU - Sheves, Mordechai
AU - Cahen, David
N1 - Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/10/17
Y1 - 2018/10/17
N2 - Making biomolecular electronics a reality will require control over charge transport across biomolecules. Here we show that chemical modulation of the coupling between one of the electronic contacts and the biomolecules in a solid-state junction allows controlling electron transport (ETp) across the junction. Employing the protein azurin (Az), we achieve such modulation as follows: Az is covalently bound by Au-S bonding to a lithographically prepared Au electrode (Au-Az). Au nanowires (AuNW) onto which linker molecules, with free carboxylic group, are bound via Au-S bonds serve as top electrode. Current-voltage plots of AuNW-linkerCOOH//Az-Au junctions have been shown earlier to exhibit step-like features, due to resonant tunneling through discrete Az energy levels. Forming an amide bond between the free carboxylic group of the AuNW-bound linker and Az yields AuNW-linkerCO-NH-Az-Au junctions. This Az-linker bond switches the ETp mechanism from resonant to off-resonant tunneling. By varying the extent of this amide bonding, the current-voltage dependence can be controlled between these two mechanisms, thus providing a platform for altering and controlling the ETp mechanism purely by chemical modification in a two-terminal device, i.e., without a gate electrode. Using results from conductance, including the energy barrier and electrode-molecule coupling parameters extracted from current-voltage fitting and normalized differential conductance analysis and from inelastic-electron-tunneling and photoelectron spectroscopies, we determine the Az frontier orbital energies, with respect to the Au Fermi level, for four junction configurations, differing only in electrode-protein coupling. Our approach and findings open the way to both qualitative and quantitative control of biomolecular electronic junctions.
AB - Making biomolecular electronics a reality will require control over charge transport across biomolecules. Here we show that chemical modulation of the coupling between one of the electronic contacts and the biomolecules in a solid-state junction allows controlling electron transport (ETp) across the junction. Employing the protein azurin (Az), we achieve such modulation as follows: Az is covalently bound by Au-S bonding to a lithographically prepared Au electrode (Au-Az). Au nanowires (AuNW) onto which linker molecules, with free carboxylic group, are bound via Au-S bonds serve as top electrode. Current-voltage plots of AuNW-linkerCOOH//Az-Au junctions have been shown earlier to exhibit step-like features, due to resonant tunneling through discrete Az energy levels. Forming an amide bond between the free carboxylic group of the AuNW-bound linker and Az yields AuNW-linkerCO-NH-Az-Au junctions. This Az-linker bond switches the ETp mechanism from resonant to off-resonant tunneling. By varying the extent of this amide bonding, the current-voltage dependence can be controlled between these two mechanisms, thus providing a platform for altering and controlling the ETp mechanism purely by chemical modification in a two-terminal device, i.e., without a gate electrode. Using results from conductance, including the energy barrier and electrode-molecule coupling parameters extracted from current-voltage fitting and normalized differential conductance analysis and from inelastic-electron-tunneling and photoelectron spectroscopies, we determine the Az frontier orbital energies, with respect to the Au Fermi level, for four junction configurations, differing only in electrode-protein coupling. Our approach and findings open the way to both qualitative and quantitative control of biomolecular electronic junctions.
UR - http://www.scopus.com/inward/record.url?scp=85054607470&partnerID=8YFLogxK
U2 - 10.1021/jacs.8b07742
DO - 10.1021/jacs.8b07742
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 30235415
AN - SCOPUS:85054607470
SN - 0002-7863
VL - 140
SP - 13317
EP - 13326
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 41
ER -