Probing Electrochemical Behaviour of Lignocellulosic, Orange Peel Derived Hard Carbon as Anode for Sodium Ion Battery

Arka Saha, Tali Sharabani, Eliran Evenstein, Gilbert Daniel Nessim, Malachi Noked, Rosy Sharma

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Hard carbon (HC) has emerged as potential anode material for sodium-ion batteries (SIB). However, it is plagued with several issues like low capacity, poor cyclability, significant electrolyte degradation on interface. Realization of HC as anode requires fundamental understanding of the effect of its porous structure/composition on electrochemical performance. Herein, we report the use of lignocellulosic orange peel precursor for HC synthesis with tuneable surface area (SA), controlled porosity using phosphoric acid treatment. Physicochemical properties of HC were further tailored using N-doping. The electrochemical response of various HCs was tested with careful attention to the effect of HC SA and nitrogen content on the performances as anode. We show that optimized bio-waste based HC exhibits Na+ specific capacity of 125 mAhg-1 at 70 mAg-1 with significantly suppressed CO2 evolution during cycling, indicating mitigated electrolyte degradation and superior performance. We believe that this study sheds light on design rules for bio-waste low-cost precursors for synthesizing HC with tailored physical and electrochemical properties. Using such design guidelines, is crucial for developing HC based anode materials for SIB's.

Original languageEnglish
Article number090505
JournalJournal of the Electrochemical Society
Volume167
Issue number9
DOIs
StatePublished - 7 Jan 2020

Bibliographical note

Publisher Copyright:
© 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.

Fingerprint

Dive into the research topics of 'Probing Electrochemical Behaviour of Lignocellulosic, Orange Peel Derived Hard Carbon as Anode for Sodium Ion Battery'. Together they form a unique fingerprint.

Cite this