TY - JOUR
T1 - Probing dynamics of single molecules
T2 - Nonlinear spectroscopy approach
AU - Shikerman, F.
AU - Barkai, E.
N1 - Funding Information:
This work was supported by the Israel Science Foundation.
PY - 2008
Y1 - 2008
N2 - A two level model of a single molecule undergoing spectral diffusion dynamics and interacting with a sequence of two short laser pulses is investigated. Analytical solution for the probability of n=0,1,2 photon emission events for the telegraph and Gaussian processes is obtained. We examine under what circumstances the photon statistics emerging from such pump-probe setup provides new information on the stochastic process parameters and what are the measurement limitations of this technique. The impulsive and selective limits, the semiclassical approximation, and the fast modulation limit exhibit general behaviors of this new type of spectroscopy. We show that in the fast modulation limit, where one has to use impulsive pulses in order to obtain meaningful results, the information on the photon statistics is contained in the molecule's dipole correlation function, equivalently to continuous wave experiments. In contrast, the photon statistics obtained within the selective limit depends on the both spectral shifts and rates and exhibits oscillations, which are not found in the corresponding line shape.
AB - A two level model of a single molecule undergoing spectral diffusion dynamics and interacting with a sequence of two short laser pulses is investigated. Analytical solution for the probability of n=0,1,2 photon emission events for the telegraph and Gaussian processes is obtained. We examine under what circumstances the photon statistics emerging from such pump-probe setup provides new information on the stochastic process parameters and what are the measurement limitations of this technique. The impulsive and selective limits, the semiclassical approximation, and the fast modulation limit exhibit general behaviors of this new type of spectroscopy. We show that in the fast modulation limit, where one has to use impulsive pulses in order to obtain meaningful results, the information on the photon statistics is contained in the molecule's dipole correlation function, equivalently to continuous wave experiments. In contrast, the photon statistics obtained within the selective limit depends on the both spectral shifts and rates and exhibits oscillations, which are not found in the corresponding line shape.
UR - http://www.scopus.com/inward/record.url?scp=58149231175&partnerID=8YFLogxK
U2 - 10.1063/1.3037221
DO - 10.1063/1.3037221
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:58149231175
SN - 0021-9606
VL - 129
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 24
M1 - 244702
ER -