Probing dynamics of single molecules: Nonlinear spectroscopy approach

F. Shikerman, E. Barkai

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


A two level model of a single molecule undergoing spectral diffusion dynamics and interacting with a sequence of two short laser pulses is investigated. Analytical solution for the probability of n=0,1,2 photon emission events for the telegraph and Gaussian processes is obtained. We examine under what circumstances the photon statistics emerging from such pump-probe setup provides new information on the stochastic process parameters and what are the measurement limitations of this technique. The impulsive and selective limits, the semiclassical approximation, and the fast modulation limit exhibit general behaviors of this new type of spectroscopy. We show that in the fast modulation limit, where one has to use impulsive pulses in order to obtain meaningful results, the information on the photon statistics is contained in the molecule's dipole correlation function, equivalently to continuous wave experiments. In contrast, the photon statistics obtained within the selective limit depends on the both spectral shifts and rates and exhibits oscillations, which are not found in the corresponding line shape.

Original languageEnglish
Article number244702
JournalJournal of Chemical Physics
Issue number24
StatePublished - 2008

Bibliographical note

Funding Information:
This work was supported by the Israel Science Foundation.


Dive into the research topics of 'Probing dynamics of single molecules: Nonlinear spectroscopy approach'. Together they form a unique fingerprint.

Cite this