Predicting Client Emotions and Therapist Interventions in Psychotherapy Dialogues

Tobias Mayer, Neha Warikoo, Amir Eliassaf, Dana Atzil-Slonim, Iryna Gurevych

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Natural Language Processing (NLP) can advance psychotherapy research by scaling up therapy dialogue analysis as well as by allowing researchers to examine client-therapist interactions in detail. Previous studies have mainly either explored the clients' behavior or the therapists' intervention in dialogues. Yet, modelling conversations from both dialogue participants is crucial to understanding the therapeutic interaction. This study explores speaker contribution-based dialogue acts at the utterance-level; i.e, the therapist-Intervention Prediction (IP) and the client-Emotion Recognition (ER) in psychotherapy using a pan-theoretical schema. We perform experiments with fine-tuned language models and light-weight adapter solutions on a Hebrew dataset. We deploy the results from our ER model predictions in investigating the coherence between client self-reports on emotion and the utterance-level emotions. Our best adapters achieved on-par performance with fully fine-tuned models, at 0.64 and 0.66 micro F1 for IP and ER, respectively. In addition, our analysis identifies ambiguities within categorical clinical coding, which can be used to fine-tune the coding schema. Finally, our results indicate a positive correlation between client self-reports and utterance-level emotions.

Original languageEnglish
Title of host publicationEACL 2024 - 18th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference
EditorsYvette Graham, Matthew Purver, Matthew Purver
PublisherAssociation for Computational Linguistics (ACL)
Pages1463-1477
Number of pages15
ISBN (Electronic)9798891760882
StatePublished - 2024
Event18th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2024 - St. Julian�s, Malta
Duration: 17 Mar 202422 Mar 2024

Publication series

NameEACL 2024 - 18th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference
Volume1

Conference

Conference18th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2024
Country/TerritoryMalta
CitySt. Julian�s
Period17/03/2422/03/24

Bibliographical note

Publisher Copyright:
© 2024 Association for Computational Linguistics.

Fingerprint

Dive into the research topics of 'Predicting Client Emotions and Therapist Interventions in Psychotherapy Dialogues'. Together they form a unique fingerprint.

Cite this