Polyhydroxybutyrate-based nanocomposites for bone tissue engineering

Anand Mohan, Madhuri Girdhar, Raj Kumar, Harshil S. Chaturvedi, Agrataben Vadhel, Pratima R. Solanki, Anil Kumar, Deepak Kumar, Narsimha Mamidi

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Bone-related diseases have been increasing worldwide, and several nanocomposites have been used to treat them. Among several nanocomposites, polyhydroxybutyrate (PHB)-based nanocomposites are widely used in drug delivery and tissue engineering due to their excellent biocompatibility and biodegradability. However, PHB use in bone tissue engineering is limited due to its inadequate physicochemical and mechanical properties. In the present work, we synthesized PHB-based nanocomposites using a nanoblend and nano-clay with modified montmorillonite (MMT) as a filler. MMT was modified using trimethyl stearyl ammonium (TMSA). Nanoblend and nano-clay were fabricated using the solvent-casting technique. Inspection of the composite structure revealed that the basal spacing of the polymeric matrix material was significantly altered depending on the loading percentage of organically modified montmorillonite (OMMT) nano-clay. The PHB/OMMT nanocomposite displayed enhanced thermal stability and upper working temperature upon heating as compared to the pristine polymer. The dispersed (OMMT) nano-clay assisted in the formation of pores on the surface of the polymer. The pore size was proportional to the weight percentage of OMMT. Further morphological analysis of these blends was carried out through FESEM. The obtained nanocomposites exhibited augmented properties over neat PHB and could have an abundance of applications in the industry and medicinal sectors. In particular, improved porosity, non-immunogenic nature, and strong biocompatibility suggest their effective application in bone tissue engineering. Thus, PHB/OMMT nanocomposites are a promising candidate for 3D organ printing, lab-on-a-chip scaffold engineering, and bone tissue engineering.

Original languageEnglish
Article number1163
JournalPharmaceuticals
Volume14
Issue number11
DOIs
StatePublished - 15 Nov 2021
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Funding

Acknowledgments: This work was supported by Lovely Professional University, Phagwara, Punjab, grant no LPU/DRD/IPS/Sac/002. Raj Kumar is thankful to the University of Michigan, USA. Narsimha Mamidi acknowledges the Tecnologico de Monterrey for financial support. Funding: This research received external funding from Lovely Professional University, Phagwara, Punjab, grant no LPU/DRD/IPS/Sac/002.

FundersFunder number
Instituto Tecnológico y de Estudios Superiores de Monterrey
Lovely Professional UniversityLPU/DRD/IPS/Sac/002

    Keywords

    • Biomedical technology
    • Montmorillonite
    • Nano-clay
    • Nanoblend
    • Nanocomposite
    • Poly-hydroxy butyrate
    • Tissue engineering

    Fingerprint

    Dive into the research topics of 'Polyhydroxybutyrate-based nanocomposites for bone tissue engineering'. Together they form a unique fingerprint.

    Cite this