Planted Dense Subgraphs in Dense Random Graphs Can Be Recovered using Graph-based Machine Learning

Itay Levinas, Yoram Louzoun

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Multiple methods of finding the vertices belonging to a planted dense subgraph in a random dense G(n, p) graph have been proposed, with an emphasis on planted cliques. Such methods can identify the planted subgraph in polynomial time, but are all limited to several subgraph structures. Here, we present PYGON, a graph neural network-based algorithm, which is insensitive to the structure of the planted subgraph. This is the first algorithm that uses learning tools for recovering dense subgraphs. We show that PYGON can recover cliques of sizes Θ (√n), where n is the size of the background graph, comparable with the state of the art. We also show that the same algorithm can recover multiple other planted subgraphs of size Θ (√n), in both directed and undirected graphs. We suggest a conjecture that no polynomial time PAC-learning algorithm can detect planted dense subgraphs with size smaller than O (√n), even if in principle one could find dense subgraphs of logarithmic size.

Original languageEnglish
Pages (from-to)541-568
Number of pages28
JournalJournal of Artificial Intelligence Research
Volume75
DOIs
StatePublished - 2022

Bibliographical note

Publisher Copyright:
© 2022 AI Access Foundation. All rights reserved.

Fingerprint

Dive into the research topics of 'Planted Dense Subgraphs in Dense Random Graphs Can Be Recovered using Graph-based Machine Learning'. Together they form a unique fingerprint.

Cite this