TY - JOUR
T1 - PKC-δ-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice
T2 - Role for NADPH oxidase
AU - Talior, Ilana
AU - Tennenbaum, Tamar
AU - Kuroki, Toshio
AU - Eldar-Finkelman, Hagit
PY - 2005/2
Y1 - 2005/2
N2 - Oxidative stress is thought to be one of the causative factors contributing to insulin resistance and type 2 diabetes. Previously, we showed that reactive oxygen species (ROS) production is significantly increased in adipocytes from high-fat diet-induced obese and insulin-resistant mice (HF). ROS production was also associated with the increased activity of PKC-δ. In the present studies, we hypothesized that PKC-δ contributes to ROS generation and determined their intracellular source. NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) reduced ROS levels by 50% in HF adipocytes, and inhibitors of NO synthase (L-NAME, 1 mM), xanthine oxidase (allopurinol, 100 μM), AGE formation (aminoguanidine, 10 μM), or the mitochondrial uncoupler (FCCP, 10 μM) had no effect. Rottlerin, a selective PKC-δ inhibitor, suppressed ROS levels by ∼50%. However, neither GÖ-6976 nor LY-333531, effective inhibitors toward conventional PKC or PKC-β, respectively, significantly altered ROS levels in HF adipocytes. Subsequently, adenoviral-mediated expression of wild-type PKC-δ or its dominant negative mutant (DN-PKC-δ) in HF adipocytes resulted in either a twofold increase in ROS levels or their suppression by 20%, respectively. In addition, both ROS levels and PKC-δ activity were sharply reduced by glucose depletion. Taken together, these results suggest that PKC-δ is responsible for elevated intracellular ROS production in HF adipocytes, and this is mediated by high glucose and NADPH oxidase.
AB - Oxidative stress is thought to be one of the causative factors contributing to insulin resistance and type 2 diabetes. Previously, we showed that reactive oxygen species (ROS) production is significantly increased in adipocytes from high-fat diet-induced obese and insulin-resistant mice (HF). ROS production was also associated with the increased activity of PKC-δ. In the present studies, we hypothesized that PKC-δ contributes to ROS generation and determined their intracellular source. NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) reduced ROS levels by 50% in HF adipocytes, and inhibitors of NO synthase (L-NAME, 1 mM), xanthine oxidase (allopurinol, 100 μM), AGE formation (aminoguanidine, 10 μM), or the mitochondrial uncoupler (FCCP, 10 μM) had no effect. Rottlerin, a selective PKC-δ inhibitor, suppressed ROS levels by ∼50%. However, neither GÖ-6976 nor LY-333531, effective inhibitors toward conventional PKC or PKC-β, respectively, significantly altered ROS levels in HF adipocytes. Subsequently, adenoviral-mediated expression of wild-type PKC-δ or its dominant negative mutant (DN-PKC-δ) in HF adipocytes resulted in either a twofold increase in ROS levels or their suppression by 20%, respectively. In addition, both ROS levels and PKC-δ activity were sharply reduced by glucose depletion. Taken together, these results suggest that PKC-δ is responsible for elevated intracellular ROS production in HF adipocytes, and this is mediated by high glucose and NADPH oxidase.
KW - Insulin-resistant adipcoytes
KW - Protein kinase C-δ
UR - http://www.scopus.com/inward/record.url?scp=12144273607&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.00378.2004
DO - 10.1152/ajpendo.00378.2004
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 15507533
AN - SCOPUS:12144273607
SN - 0193-1849
VL - 288
SP - E405-E411
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 2 51-2
ER -