Perturbation Analysis of Neural Collapse

Tom Tirer, Haoxiang Huang, Jonathan Niles-Weed

Research output: Contribution to journalConference articlepeer-review

Abstract

Training deep neural networks for classification often includes minimizing the training loss beyond the zero training error point. In this phase of training, a “neural collapse” behavior has been observed: the variability of features (outputs of the penultimate layer) of within-class samples decreases and the mean features of different classes approach a certain tight frame structure. Recent works analyze this behavior via idealized unconstrained features models where all the minimizers exhibit exact collapse. However, with practical networks and datasets, the features typically do not reach exact collapse, e.g., because deep layers cannot arbitrarily modify intermediate features that are far from being collapsed. In this paper, we propose a richer model that can capture this phenomenon by forcing the features to stay in the vicinity of a predefined features matrix (e.g., intermediate features). We explore the model in the small vicinity case via perturbation analysis and establish results that cannot be obtained by the previously studied models. For example, we prove reduction in the within-class variability of the optimized features compared to the predefined input features (via analyzing gradient flow on the “central-path” with minimal assumptions), analyze the minimizers in the near-collapse regime, and provide insights on the effect of regularization hyperparameters on the closeness to collapse. We support our theory with experiments in practical deep learning settings.

Original languageEnglish
Pages (from-to)34301-34329
Number of pages29
JournalProceedings of Machine Learning Research
Volume202
StatePublished - 2023
Event40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States
Duration: 23 Jul 202329 Jul 2023

Bibliographical note

Publisher Copyright:
© 2023 Proceedings of Machine Learning Research. All rights reserved.

Fingerprint

Dive into the research topics of 'Perturbation Analysis of Neural Collapse'. Together they form a unique fingerprint.

Cite this