Perturbation analysis of Joint Eigenvalue Decomposition Algorithms

Emilio Rafael Balda, Sher Ali Cheema, Amir Weiss, Arie Yeredor, Martin Haardt

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Joint EigenValue Decomposition (JEVD) algorithms are widely used in many application scenarios. These algorithms can be divided into different categories based on the cost function that needs to be minimized. Most of the frequently used algorithms in the literature use indirect least square (LS) criteria as a cost function. In this work, we perform a first order perturbation analysis for the JEVD algorithms based on the indirect LS criterion. We also present closed-form expressions for the eigenvector and eigenvalue matrices. The obtained expressions are asymptotic in the signal-to-noise ratio (SNR). Additionally, we use these results to obtain a statistical analysis, where we only assume that the noise has finite second order moments. The simulation results show that the proposed analytical expressions match well to the empirical results of JEVD algorithms which are based on the LS cost function.

Original languageEnglish
Title of host publication2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3101-3105
Number of pages5
ISBN (Electronic)9781509041176
DOIs
StatePublished - 16 Jun 2017
Externally publishedYes
Event2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, United States
Duration: 5 Mar 20179 Mar 2017

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
Country/TerritoryUnited States
CityNew Orleans
Period5/03/179/03/17

Bibliographical note

Publisher Copyright:
© 2017 IEEE.

Keywords

  • joint eigenvalue decomposition
  • Perturbation analysis

Fingerprint

Dive into the research topics of 'Perturbation analysis of Joint Eigenvalue Decomposition Algorithms'. Together they form a unique fingerprint.

Cite this