Percolation framework of the Earth's topography

Jingfang Fan, Jun Meng, Abbas Ali Saberi

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Self-similarity and long-range correlations are the remarkable features of the Earth's surface topography. Here we develop an approach based on percolation theory to study the geometrical features of Earth. Our analysis is based on high-resolution, 1 arc min, ETOPO1 global relief records. We find some evidence for abrupt transitions that occurred during the evolution of the Earth's relief network, indicative of a continental/cluster aggregation. We apply finite-size-scaling analysis based on a coarse-graining procedure to show that the observed transition is most likely discontinuous. Furthermore, we study the percolation on two-dimensional fractional Brownian motion surfaces with Hurst exponent H as a model of long-range correlated topography, which suggests that the long-range correlations may play a key role in the observed discontinuity on Earth. Our framework presented here provides a theoretical model to better understand the geometrical phase transition on Earth, and it also identifies the critical nodes that will be more exposed to global climate change in the Earth's relief network.

Original languageEnglish
Article number022304
JournalPhysical Review E
Issue number2
StatePublished - 5 Feb 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019 American Physical Society.


Dive into the research topics of 'Percolation framework of the Earth's topography'. Together they form a unique fingerprint.

Cite this