TY - JOUR
T1 - Penetrating Barriers
T2 - Noncontact Measurement of Vital Bio Signs Using Radio Frequency Technology
AU - Aflalo, Kobi
AU - Zalevsky, Zeev
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/9/5
Y1 - 2024/9/5
N2 - The noninvasive measurement and sensing of vital bio signs, such as respiration and cardiopulmonary parameters, has become an essential part of the evaluation of a patient’s physiological condition. The demand for new technologies that facilitate remote and noninvasive techniques for such measurements continues to grow. While previous research has made strides in the continuous monitoring of vital bio signs using lasers, this paper introduces a novel technique for remote noncontact measurements based on radio frequencies. Unlike laser-based methods, this innovative approach offers the advantage of penetrating through walls and tissues, enabling the measurement of respiration and heart rate. Our method, diverging from traditional radar systems, introduces a unique sensing concept that enables the detection of micro-movements in all directions, including those parallel to the antenna surface. The main goal of this work is to present a novel, simple, and cost-effective measurement tool capable of indicating changes in a subject’s condition. By leveraging the unique properties of radio frequencies, this technique allows for the noninvasive monitoring of vital bio signs without the need for physical contact or invasive procedures. Moreover, the ability to penetrate barriers such as walls and tissues opens new possibilities for remote monitoring in various settings, including home healthcare, hospital environments, and even search and rescue operations. In order to validate the effectiveness of this technique, a series of experiments were conducted using a prototype device. The results demonstrated the feasibility of accurately measuring respiration patterns and heart rate remotely, showcasing the potential for real-time monitoring of a patient’s physiological parameters. Furthermore, the simplicity and low-cost nature of the proposed measurement tool make it accessible to a wide range of users, including healthcare professionals, caregivers, and individuals seeking to monitor their own health.
AB - The noninvasive measurement and sensing of vital bio signs, such as respiration and cardiopulmonary parameters, has become an essential part of the evaluation of a patient’s physiological condition. The demand for new technologies that facilitate remote and noninvasive techniques for such measurements continues to grow. While previous research has made strides in the continuous monitoring of vital bio signs using lasers, this paper introduces a novel technique for remote noncontact measurements based on radio frequencies. Unlike laser-based methods, this innovative approach offers the advantage of penetrating through walls and tissues, enabling the measurement of respiration and heart rate. Our method, diverging from traditional radar systems, introduces a unique sensing concept that enables the detection of micro-movements in all directions, including those parallel to the antenna surface. The main goal of this work is to present a novel, simple, and cost-effective measurement tool capable of indicating changes in a subject’s condition. By leveraging the unique properties of radio frequencies, this technique allows for the noninvasive monitoring of vital bio signs without the need for physical contact or invasive procedures. Moreover, the ability to penetrate barriers such as walls and tissues opens new possibilities for remote monitoring in various settings, including home healthcare, hospital environments, and even search and rescue operations. In order to validate the effectiveness of this technique, a series of experiments were conducted using a prototype device. The results demonstrated the feasibility of accurately measuring respiration patterns and heart rate remotely, showcasing the potential for real-time monitoring of a patient’s physiological parameters. Furthermore, the simplicity and low-cost nature of the proposed measurement tool make it accessible to a wide range of users, including healthcare professionals, caregivers, and individuals seeking to monitor their own health.
KW - heart rate
KW - microwave
KW - noninvasive
KW - respiration rate
UR - http://www.scopus.com/inward/record.url?scp=85203874523&partnerID=8YFLogxK
U2 - 10.3390/s24175784
DO - 10.3390/s24175784
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 39275695
AN - SCOPUS:85203874523
SN - 1424-3210
VL - 24
JO - Sensors
JF - Sensors
IS - 17
M1 - 5784
ER -