Paraphrasing vs coreferring: Two sides of the same coin

Yehudit Meged, Avi Caciularu, Vered Shwartz, Ido Dagan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Scopus citations

Abstract

We study the potential synergy between two different NLP tasks, both confronting predicate lexical variability: identifying predicate paraphrases, and event coreference resolution. First, we used annotations from an event coreference dataset as distant supervision to re-score heuristically-extracted predicate paraphrases. The new scoring gained more than 18 points in average precision upon their ranking by the original scoring method. Then, we used the same re-ranking features as additional inputs to a state-of-the-art event coreference resolution model, which yielded modest but consistent improvements to the model’s performance. The results suggest a promising direction to leverage data and models for each of the tasks to the benefit of the other.

Original languageEnglish
Title of host publicationFindings of the Association for Computational Linguistics Findings of ACL
Subtitle of host publicationEMNLP 2020
PublisherAssociation for Computational Linguistics (ACL)
Pages4897-4907
Number of pages11
ISBN (Electronic)9781952148903
StatePublished - 2020
EventFindings of the Association for Computational Linguistics, ACL 2020: EMNLP 2020 - Virtual, Online
Duration: 16 Nov 202020 Nov 2020

Publication series

NameFindings of the Association for Computational Linguistics Findings of ACL: EMNLP 2020

Conference

ConferenceFindings of the Association for Computational Linguistics, ACL 2020: EMNLP 2020
CityVirtual, Online
Period16/11/2020/11/20

Bibliographical note

Publisher Copyright:
© 2020 Association for Computational Linguistics

Fingerprint

Dive into the research topics of 'Paraphrasing vs coreferring: Two sides of the same coin'. Together they form a unique fingerprint.

Cite this