Parametric temporal logic for “model measuring

R. Alur, K. Etessami, S. La Torre, D. Peled

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We extend the standard model checking paradigm of linear temporal logic, LTL, to a “model measuring” paradigm where one can obtain more quantitative information beyond a “Yes/No” answer. For this purpose, we define a parametric temporal logic, PLTL, which allows statements such as “a request p is followed in at most x steps by a response q”, where x is a free variable. We show how one can, given a formula ϕ(x 1,...,x k) of PLTL and a system model K, not only determine whether there exists a valuation of x 1,...,x k under which the system K satisfies the property ε, but if so find valuations which satisfy various optimality criteria. In particular, we present algorithms for finding valuations which minimize (or maximize) the maximum (or minimum) of all parameters. These algorithms exhibit the same PSPACE complexity as LTL model checking.We show that our choice of syntax for PLTL lies at the threshold of decidability for parametric temporal logics, in that several natural extensions have undecidable “model measuring” problems.
Original languageAmerican English
Title of host publicationInternational Colloquium on Automata, Languages, and Programming
EditorsJiří Wiedermann, Peter van Emde Boas, Mogens Nielsen
PublisherSpringer Berlin Heidelberg
StatePublished - 1999

Bibliographical note

Place of conference:Prague, Czech Republic

Fingerprint

Dive into the research topics of 'Parametric temporal logic for “model measuring'. Together they form a unique fingerprint.

Cite this