TY - JOUR
T1 - On the universal supersingular mod p representations of GL2(F)
AU - Schein, Michael M.
PY - 2014/8
Y1 - 2014/8
N2 - The irreducible supersingular mod p representations of G = GL2(F), where F is a finite extension of Qp, are the building blocks of the mod p representation theory of G. They all arise as irreducible quotients of certain universal supersingular representations. We investigate the structure of these universal modules in the case when F/Qp is totally ramified.
AB - The irreducible supersingular mod p representations of G = GL2(F), where F is a finite extension of Qp, are the building blocks of the mod p representation theory of G. They all arise as irreducible quotients of certain universal supersingular representations. We investigate the structure of these universal modules in the case when F/Qp is totally ramified.
KW - Mod p local Langlands
KW - Modular representation
KW - Supersingular representation
UR - http://www.scopus.com/inward/record.url?scp=84898615122&partnerID=8YFLogxK
U2 - 10.1016/j.jnt.2014.02.002
DO - 10.1016/j.jnt.2014.02.002
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84898615122
SN - 0022-314X
VL - 141
SP - 242
EP - 277
JO - Journal of Number Theory
JF - Journal of Number Theory
ER -