TY - JOUR
T1 - On the syntactic transformation semigroup of a language generated by a finite biprefix code
AU - Margolis, Stuart W.
PY - 1982/11
Y1 - 1982/11
N2 - Let P be a finite biprefix code and let X=(Q, S) be the syntactic transformation semigroup (ts) of P+. We show that if e ε{lunate} S is an idempotent, then the ts Xe = (Qe, eqe) consists of partial one to one maps. We also show that any ts of partial one to one maps divides a ts of partial one to one maps which is the syntactic ts of a finite biprefix code.
AB - Let P be a finite biprefix code and let X=(Q, S) be the syntactic transformation semigroup (ts) of P+. We show that if e ε{lunate} S is an idempotent, then the ts Xe = (Qe, eqe) consists of partial one to one maps. We also show that any ts of partial one to one maps divides a ts of partial one to one maps which is the syntactic ts of a finite biprefix code.
UR - http://www.scopus.com/inward/record.url?scp=27644562886&partnerID=8YFLogxK
U2 - 10.1016/0304-3975(89)90085-6
DO - 10.1016/0304-3975(89)90085-6
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:27644562886
SN - 0304-3975
VL - 21
SP - 225
EP - 230
JO - Theoretical Computer Science
JF - Theoretical Computer Science
IS - 2
ER -