On the Significance of the quantum mechanical covariance matrix

Avishy Carmi, Eliahu Cohen

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

The characterization of quantum correlations, being stronger than classical, yet weaker than those appearing in non-signaling models, still poses many riddles. In this work, we show that the extent of binary correlations in a general class of nonlocal theories can be characterized by the existence of a certain covariance matrix. The set of quantum realizable two-point correlators in the bipartite case then arises from a subtle restriction on the structure of this general covariance matrix. We also identify a class of theories whose covariance has neither a quantum nor an "almost quantum" origin, but which nevertheless produce the accessible two-point quantum mechanical correlators. Our approach leads to richer Bell-type inequalities in which the extent of nonlocality is intimately related to a non-additive entropic measure. In particular, it suggests that the Tsallis entropy with parameter q = 1/2 is a natural operational measure of non-classicality. Moreover, when generalizing this covariance matrix, we find novel characterizations of the quantum mechanical set of correlators in multipartite scenarios. All these predictions might be experimentally validated when adding weak measurements to the conventional Bell test (without adding postselection).

Original languageEnglish
JournalEntropy
Volume20
Issue number7
DOIs
StatePublished - 28 Jun 2018
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2018 by the author.

Funding

Funding: The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 51505292). A.C. acknowledges support from Israel Science Foundation Grant No. 1723/16. E.C. was supported by the Canada Research Chairs (CRC) Program. We thank Sandu Popescu, Paul Skrzypczyk and Elie Wolfe for helpful comments and discussions

FundersFunder number
National Natural Science Foundation of China51505292
Israel Science Foundation1723/16

    Keywords

    • Nonlocality
    • Quantum bounds
    • Quantum correlations
    • Tsallis entropy

    Fingerprint

    Dive into the research topics of 'On the Significance of the quantum mechanical covariance matrix'. Together they form a unique fingerprint.

    Cite this