On the minimal faithful degree of Rhodes semisimple semigroups

Stuart Margolis, Benjamin Steinberg

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

In this paper we compute the minimal degree of a faithful representation by partial transformations of a finite semigroup admitting a faithful completely reducible matrix representation over the field of complex numbers. This includes all inverse semigroups, and hence our results generalize earlier results of Easdown and Schein on the minimal faithful degree of an inverse semigroup. It also includes well-studied monoids like full matrix monoids over finite fields and the monoid of binary relations (i.e., matrices over the Boolean semiring). Our answer reduces the computation to considerations of permutation representations of maximal subgroups that are faithful when restricted to distinguished normal subgroups. This is analogous to (and inspired by) recent results of the second author on the minimal number of irreducible constituents in a faithful completely reducible complex matrix representation of a finite semigroup that admits one. To illustrate what happens when a finite semigroup does not admit a faithful completely reducible representation, we compute the minimal faithful degree of the opposite monoid of the full transformation monoid.

Original languageEnglish
Pages (from-to)788-813
Number of pages26
JournalJournal of Algebra
Volume633
DOIs
StatePublished - 1 Nov 2023

Bibliographical note

Publisher Copyright:
© 2023 Elsevier Inc.

Funding

The second author was supported by a Simons Foundation Collaboration Grant, award number 849561.

FundersFunder number
Simons Foundation849561

    Keywords

    • Minimal faithful degree
    • Semigroups

    Fingerprint

    Dive into the research topics of 'On the minimal faithful degree of Rhodes semisimple semigroups'. Together they form a unique fingerprint.

    Cite this