TY - GEN
T1 - On the ICP algorithm
AU - Ezra, Esther
AU - Sharir, Micha
AU - Efrat, Alon
PY - 2006
Y1 - 2006
N2 - We present upper and lower bounds for the number of iterations performed by the Iterative Closest Point (ICP) algorithm. This algorithm has been proposed by Besl and McKay [4] as a successful heuristics for pattern matching under translation, where the input consists of two point sets in d-space, for d ≥ 1, but so far it seems not to have been rigorously analyzed. We consider two standard measures of resemblance that the algorithm attempts to optimize: The RMS (root mean squared distance) and the (one-directional) Hausdorff distance. We show that in both cases the number of iterations performed by the algorithm is polynomial in the number of input points. In particular, this bound is quadratic in the one-dimensional problem, for which we present a lower bound construction of Ω(n log n) iterations under the RMS measure, where n is the overall size of the input. Under the Hausdorff measure, this bound is only O(n) for input point sets whose spread is polynomial in n, and this is tight in the worst case. We also present several structural geometric properties of the algorithm under both measures. For the RMS measure, we show that at each iteration of the algorithm the cost function monotonically and strictly decreases along the vector δt of the relative translation. As a result, we conclude that the polygonal path π, obtained by concatenating all the rel ative translations that are computed during the execution of the algorithm, does not intersect itself. In particular, in the one-dimensional problem all the relative translations of the ICP algorithm are in the same (left or right) direction. For the Hausdorff measure, some of these properties continue to hold (such as monotonicity in one dimension), whereas others do not.
AB - We present upper and lower bounds for the number of iterations performed by the Iterative Closest Point (ICP) algorithm. This algorithm has been proposed by Besl and McKay [4] as a successful heuristics for pattern matching under translation, where the input consists of two point sets in d-space, for d ≥ 1, but so far it seems not to have been rigorously analyzed. We consider two standard measures of resemblance that the algorithm attempts to optimize: The RMS (root mean squared distance) and the (one-directional) Hausdorff distance. We show that in both cases the number of iterations performed by the algorithm is polynomial in the number of input points. In particular, this bound is quadratic in the one-dimensional problem, for which we present a lower bound construction of Ω(n log n) iterations under the RMS measure, where n is the overall size of the input. Under the Hausdorff measure, this bound is only O(n) for input point sets whose spread is polynomial in n, and this is tight in the worst case. We also present several structural geometric properties of the algorithm under both measures. For the RMS measure, we show that at each iteration of the algorithm the cost function monotonically and strictly decreases along the vector δt of the relative translation. As a result, we conclude that the polygonal path π, obtained by concatenating all the rel ative translations that are computed during the execution of the algorithm, does not intersect itself. In particular, in the one-dimensional problem all the relative translations of the ICP algorithm are in the same (left or right) direction. For the Hausdorff measure, some of these properties continue to hold (such as monotonicity in one dimension), whereas others do not.
KW - Hausdorff distance
KW - ICP
KW - Pattern matching
KW - RMS
KW - Voronoi diagram
UR - http://www.scopus.com/inward/record.url?scp=33748040762&partnerID=8YFLogxK
U2 - 10.1145/1137856.1137873
DO - 10.1145/1137856.1137873
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:33748040762
SN - 1595933409
SN - 9781595933409
T3 - Proceedings of the Annual Symposium on Computational Geometry
SP - 95
EP - 104
BT - Proceedings of the Twenty-Second Annual Symposium on Computational Geometry 2006, SCG'06
PB - Association for Computing Machinery (ACM)
T2 - 22nd Annual Symposium on Computational Geometry 2006, SCG'06
Y2 - 5 June 2006 through 7 June 2006
ER -