On maximum matchings in König-Egerváry graphs

Vadim E. Levit, Eugen Mandrescu

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

For a graph G let α(G),μ(G), and τ(G) denote its independence number, matching number, and vertex cover number, respectively. If α(G)+μ(G)=|V(G)| or, equivalently, μ(G)=τ(G), then G is a König-Egerváry graph. In this paper we give a new characterization of König-Egerváry graphs.

Original languageEnglish
Pages (from-to)1635-1638
Number of pages4
JournalDiscrete Applied Mathematics
Volume161
Issue number10-11
DOIs
StatePublished - Jul 2013
Externally publishedYes

Keywords

  • Maximum independent set
  • Maximum matching

Fingerprint

Dive into the research topics of 'On maximum matchings in König-Egerváry graphs'. Together they form a unique fingerprint.

Cite this