TY - JOUR
T1 - On maximum matchings in König-Egerváry graphs
AU - Levit, Vadim E.
AU - Mandrescu, Eugen
PY - 2013/7
Y1 - 2013/7
N2 - For a graph G let α(G),μ(G), and τ(G) denote its independence number, matching number, and vertex cover number, respectively. If α(G)+μ(G)=|V(G)| or, equivalently, μ(G)=τ(G), then G is a König-Egerváry graph. In this paper we give a new characterization of König-Egerváry graphs.
AB - For a graph G let α(G),μ(G), and τ(G) denote its independence number, matching number, and vertex cover number, respectively. If α(G)+μ(G)=|V(G)| or, equivalently, μ(G)=τ(G), then G is a König-Egerváry graph. In this paper we give a new characterization of König-Egerváry graphs.
KW - Maximum independent set
KW - Maximum matching
UR - http://www.scopus.com/inward/record.url?scp=84876415169&partnerID=8YFLogxK
U2 - 10.1016/j.dam.2013.01.005
DO - 10.1016/j.dam.2013.01.005
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84876415169
SN - 0166-218X
VL - 161
SP - 1635
EP - 1638
JO - Discrete Applied Mathematics
JF - Discrete Applied Mathematics
IS - 10-11
ER -