Abstract
The Madelung equations map the non-relativistic time-dependent Schrödinger equation into hydrodynamic equations of a virtual fluid. While the von Neumann entropy remains constant, we demonstrate that an increase of the Shannon entropy, associated with this Madelung fluid, is proportional to the expectation value of its velocity divergence. Hence, the Shannon entropy may grow (or decrease) due to an expansion (or compression) of the Madelung fluid. These effects result from the interference between solutions of the Schrödinger equation. Growth of the Shannon entropy due to expansion is common in diffusive processes. However, in the latter the process is irreversible while the processes in the Madelung fluid are always reversible. The relations between interference, compressibility and variation of the Shannon entropy are then examined in several simple examples. Furthermore, we demonstrate that for classical diffusive processes, the “force” accelerating diffusion has the form of the positive gradient of the quantum Bohm potential. Expressing then the diffusion coefficient in terms of the Planck constant reveals the lower bound given by the Heisenberg uncertainty principle in terms of the product between the gas mean free path and the Brownian momentum.
Original language | English |
---|---|
Pages (from-to) | 815-824 |
Number of pages | 10 |
Journal | Foundations of Physics |
Volume | 46 |
Issue number | 7 |
DOIs | |
State | Published - 1 Jul 2016 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2016, Springer Science+Business Media New York.
Funding
The authors wish to thank the two anonymous reviewers for helping to improve this manuscript. E.C. was supported by ERC AdG NLST. Z.N. acknowledges partial support by the NSF under Grant No. DMR 1411229.
Funders | Funder number |
---|---|
National Science Foundation | DMR 1411229 |
European Commission | |
Neurosciences Foundation |
Keywords
- Entropy
- Hydrodynamics
- Madelung equations