TY - GEN
T1 - On coordination in practical multi-robot patrol
AU - Agmon, Noa
AU - Fok, Chien Liang
AU - Emaliah, Yehuda
AU - Stone, Peter
AU - Julien, Christine
AU - Vishwanath, Sriram
PY - 2012
Y1 - 2012
N2 - Multi-robot patrol is a fundamental application of multi-robot systems. While much theoretical work exists providing an understanding of the optimal patrol strategy for teams of coordinated homogeneous robots, little work exists on building and evaluating the performance of such systems for real. In this paper, we evaluate the performance of multirobot patrol in a practical outdoor distributed robotic system, and evaluate the effect of different coordination schemes on the performance of the robotic team. The multi-robot patrol algorithms evaluated vary in the level of robot coordination: no coordination, loose coordination, and tight coordination. In addition, we evaluate versions of these algorithms that distribute state information - either individual state, or entire team state (global-view state). Our experiments show that while tight coordination is theoretically optimal, it is not practical in practice. Instead, uncoordinated patrol performs best in terms of average waypoint visitation frequency, though loosely coordinated patrol that shares only individual state performed best in terms of worst-case frequency. Both are significantly better than a loosely coordinated algorithm based on sharing global-view state. We respond to this discrepancy between theory and practice, caused primarily by robot heterogeneity, by extending the theory to account for such heterogeneity, and find that the new theory accounts for the empirical results.
AB - Multi-robot patrol is a fundamental application of multi-robot systems. While much theoretical work exists providing an understanding of the optimal patrol strategy for teams of coordinated homogeneous robots, little work exists on building and evaluating the performance of such systems for real. In this paper, we evaluate the performance of multirobot patrol in a practical outdoor distributed robotic system, and evaluate the effect of different coordination schemes on the performance of the robotic team. The multi-robot patrol algorithms evaluated vary in the level of robot coordination: no coordination, loose coordination, and tight coordination. In addition, we evaluate versions of these algorithms that distribute state information - either individual state, or entire team state (global-view state). Our experiments show that while tight coordination is theoretically optimal, it is not practical in practice. Instead, uncoordinated patrol performs best in terms of average waypoint visitation frequency, though loosely coordinated patrol that shares only individual state performed best in terms of worst-case frequency. Both are significantly better than a loosely coordinated algorithm based on sharing global-view state. We respond to this discrepancy between theory and practice, caused primarily by robot heterogeneity, by extending the theory to account for such heterogeneity, and find that the new theory accounts for the empirical results.
UR - http://www.scopus.com/inward/record.url?scp=84864447440&partnerID=8YFLogxK
U2 - 10.1109/icra.2012.6224708
DO - 10.1109/icra.2012.6224708
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:84864447440
SN - 9781467314039
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 650
EP - 656
BT - 2012 IEEE International Conference on Robotics and Automation, ICRA 2012
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2012 IEEE International Conference on Robotics and Automation, ICRA 2012
Y2 - 14 May 2012 through 18 May 2012
ER -