Abstract
Residual-echo suppression (RES) systems suppress the echo and preserve the speech from a mixture of the two. In handsfree speech communication, RES may also be addressed as a source separation (SS) or speech enhancement (SE) problem, where the echo can be manipulated as an interfering speech signal. In this study, we fine-tune three pre-trained deep learning-based systems originally designed for RES, SS, and SE, and show that the best performing system for the task of RES varies with respect to the acoustic conditions. Then, we propose a real-time data-driven integration of these systems, where a neural network continuously tracks the system that achieves the best performance during both single-talk and double-talk periods. Experiments with 100 h of real and synthetic data show that the integrated system outperforms each individual system in terms of echo suppression and speech distortion in various acoustic environments.
Original language | English |
---|---|
Title of host publication | 2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 746-750 |
Number of pages | 5 |
ISBN (Electronic) | 9781665405409 |
DOIs | |
State | Published - 2022 |
Externally published | Yes |
Event | 47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore Duration: 23 May 2022 → 27 May 2022 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2022-May |
ISSN (Print) | 1520-6149 |
Conference
Conference | 47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 |
---|---|
Country/Territory | Singapore |
City | Virtual, Online |
Period | 23/05/22 → 27/05/22 |
Bibliographical note
Publisher Copyright:© 2022 IEEE
Funding
This research was supported by the Pazy Research Foundation.
Funders | Funder number |
---|---|
Pazy Research Foundation |
Keywords
- Acoustic echo cancellation
- deep learning
- residual-echo suppression
- speech enhancement
- speech separation