Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

30 Scopus citations

Abstract

In this paper we study the two fundamental functionalities oblivious polynomial evaluation in the exponent and set-intersection, and introduce a new technique for designing efficient secure protocols for these problems (and others). Our starting point is the [6] technique (CRYPTO 2011) for verifiable delegation of polynomial evaluations, using algebraic PRFs. We use this tool, that is useful to achieve verifiability in the outsourced setting, in order to achieve privacy in the standard two-party setting. Our results imply new simple and efficient oblivious polynomial evaluation (OPE) protocols. We further show that our OPE protocols are readily used for secure set-intersection, implying much simpler protocols in the plain model. As a side result, we demonstrate the usefulness of algebraic PRFs for various search functionalities, such as keyword search and oblivious transfer with adaptive queries. Our protocols are secure under full simulationbased definitions in the presence of malicious adversaries.

Original languageEnglish
Title of host publicationTheory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Proceedings
EditorsYevgeniy Dodis, Jesper Buus Nielsen
PublisherSpringer Verlag
Pages90-120
Number of pages31
ISBN (Electronic)9783662464960
DOIs
StatePublished - 2015
Event12th Theory of Cryptography Conference, TCC 2015 - Warsaw, Poland
Duration: 23 Mar 201525 Mar 2015

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9015
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference12th Theory of Cryptography Conference, TCC 2015
Country/TerritoryPoland
CityWarsaw
Period23/03/1525/03/15

Bibliographical note

Publisher Copyright:
© International Association for Cryptologic Research 2015.

Keywords

  • Committed Oblivious PRF
  • Efficient Secure Computation
  • Oblivious Polynomial Evaluation
  • Secure Set-Intersection

Fingerprint

Dive into the research topics of 'Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs'. Together they form a unique fingerprint.

Cite this