Numerical analysis of the effect of fiber orientation on hydrostatic buckling behavior of fiber metal composite cylinder

B. G. Sumana, H. N. Vidya Sagar, K. V. Sharma, M. Krishna

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

The external hydrostatic buckling behavior of fiber metal laminate (FML) composite cylinders was investigated numerically. The critical buckling pressure predicted by eigenvalue analysis was compared with experimental results. The numerical results showed different modes of buckling and buckling deformation for cylinders of different fiber orientation when subjected to external hydrostatic loading. FML cylinder with 0°/90° fiber orientation exhibited higher buckling strength and lower buckling deformation as compared to FML cylinders of 60°/30°, ±45°, and ±55° fiber orientations. The orientation of fiber has significant influence on the performance of FML composite cylinder as compared to fiber-reinforced plastic thickness. The correlation between numerical and experimental results is discussed in terms of buckling strength, circumferential stiffness, and buckling deformations. It was observed that the cylinders were less sensitive to initial imperfections irrespective of fiber-reinforced plastic thickness. In addition, the results of finite element analysis and experimental results indicate good matches.

Original languageEnglish
Pages (from-to)1422-1432
Number of pages11
JournalJournal of Reinforced Plastics and Composites
Volume34
Issue number17
DOIs
StatePublished - 21 Sep 2015
Externally publishedYes

Bibliographical note

Publisher Copyright:
© SAGE Publications.

Keywords

  • ANSYS
  • Fiber metal laminate cylinder
  • eigenvalue buckling
  • external hydrostatic loading
  • fiber orientation

Fingerprint

Dive into the research topics of 'Numerical analysis of the effect of fiber orientation on hydrostatic buckling behavior of fiber metal composite cylinder'. Together they form a unique fingerprint.

Cite this