A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity

Xin Qi, Nir Qvit, Yu Chin Su, Daria Mochly-Rosen

Research output: Contribution to journalArticlepeer-review

380 Scopus citations

Abstract

Excessive mitochondrial fission is associated with the pathology of a number of neurodegenerative diseases. Therefore, inhibitors of aberrant mitochondrial fission could provide important research tools in addition to potential leads for drug development. Using a rational approach, we designed a novel and selective peptide inhibitor, P110, of excessive mitochondrial fission. P110 inhibits Drp1 enzyme activity and blocks Drp1/Fis1 interaction in vitro and in cultured neurons, whereas it has no effect on the interaction between Drp1 and other mitochondrial adaptors, as demonstrated by co-immunoprecipitation. Furthermore, using a model of Parkinson's disease (PD) in culture, we demonstrated that P110 is neuroprotective by inhibiting mitochondrial fragmentation and reactive oxygen species (ROS) production and subsequently improving mitochondrial membrane potential and mitochondrial integrity. P110 increased neuronal cell viability by reducing apoptosis and autophagic cell death, and reduced neurite loss of primary dopaminergic neurons in this PD cell culture model. We also found that P110 treatment appears to have minimal effects on mitochondrial fission and cell viability under basal conditions. Finally, P110 required the presence of Drp1 to inhibit mitochondrial fission under oxidative stress conditions. Taken together, our findings suggest that P110, as a selective peptide inhibitor of Drp1, might be useful for the treatment of diseases in which excessive mitochondrial fission and mitochondrial dysfunction occur.

Original languageEnglish
Pages (from-to)789-802
Number of pages14
JournalJournal of Cell Science
Volume126
Issue number3
DOIs
StatePublished - 1 Feb 2013
Externally publishedYes

Keywords

  • Dynamin related protein 1
  • Mitochondrial fission
  • Neuronal cell death
  • Peptide inhibitor

Fingerprint

Dive into the research topics of 'A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity'. Together they form a unique fingerprint.

Cite this