TY - JOUR
T1 - Normal families of holomorphic functions with multiple zeros
AU - Pang, Xuecheng
AU - Fang, Mingliang
AU - Zalcman, Lawrence
PY - 2007/6/13
Y1 - 2007/6/13
N2 - Let F be a family of functions holomorphic on a domain D in C, all of whose zeros are multiple. Let h be a function meromorphic on D, h ≢ 0, ∞. Suppose that for each f ∈ F, f'(z) ≠ h(z) for z ∈ D. Then F is a normal family on D.
AB - Let F be a family of functions holomorphic on a domain D in C, all of whose zeros are multiple. Let h be a function meromorphic on D, h ≢ 0, ∞. Suppose that for each f ∈ F, f'(z) ≠ h(z) for z ∈ D. Then F is a normal family on D.
UR - http://www.scopus.com/inward/record.url?scp=54149115691&partnerID=8YFLogxK
U2 - 10.1090/S1088-4173-07-00162-2
DO - 10.1090/S1088-4173-07-00162-2
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:54149115691
SN - 1088-4173
VL - 11
SP - 101
EP - 106
JO - Conformal Geometry and Dynamics
JF - Conformal Geometry and Dynamics
IS - 8
ER -