Nonconsensus opinion model on directed networks

Bo Qu, Qian Li, Shlomo Havlin, H. Eugene Stanley, Huijuan Wang

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


Dynamic social opinion models have been widely studied on undirected networks, and most of them are based on spin interaction models that produce a consensus. In reality, however, many networks such as Twitter and the World Wide Web are directed and are composed of both unidirectional and bidirectional links. Moreover, from choosing a coffee brand to deciding who to vote for in an election, two or more competing opinions often coexist. In response to this ubiquity of directed networks and the coexistence of two or more opinions in decision-making situations, we study a nonconsensus opinion model introduced by Shao et al. [Phys. Rev. Lett. 103, 018701 (2009)PRLTAO0031-900710.1103/PhysRevLett.103.018701] on directed networks. We define directionality ξ as the percentage of unidirectional links in a network, and we use the linear correlation coefficient ρ between the in-degree and out-degree of a node to quantify the relation between the in-degree and out-degree. We introduce two degree-preserving rewiring approaches which allow us to construct directed networks that can have a broad range of possible combinations of directionality ξ and linear correlation coefficient ρ and to study how ξ and ρ impact opinion competitions. We find that, as the directionality ξ or the in-degree and out-degree correlation ρ increases, the majority opinion becomes more dominant and the minority opinion's ability to survive is lowered.

Original languageEnglish
Article number052811
JournalPhysical Review E
Issue number5
StatePublished - 17 Nov 2014

Bibliographical note

Publisher Copyright:
© 2014 American Physical Society.


Dive into the research topics of 'Nonconsensus opinion model on directed networks'. Together they form a unique fingerprint.

Cite this